|新一代信息技术 信息基础设施建设 互联网+ 大数据 人工智能 高端信息技术核心产业
|高端制造 机器人 智能制造 新材料
|生物产业 生物医药 生物农业 生物技术
|绿色低碳 清洁能源汽车 环保产业 高效节能产业 生态修复 资源循环利用
|数字创意 数创装备 内容创新 设计创新
|产业资讯
|地方亮点及地方发改委动态
|独家内容
|杂志订阅
✍️ 投稿
您的位置:首页 > 声音
DeepSeek-R1模型训练方法发布
2025-09-18 11:09
来源:科技日报
字体: [   ]
  DeepSeek-AI团队梁文锋及其同事17日在《自然》杂志上发表了开源人工智能(AI)模型DeepSeek-R1所采用的大规模推理模型训练方法。研究表明,大语言模型(LLM)的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM领域研究生水平问题等任务上,比传统训练的LLM表现更好。
  DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。梁文锋团队报告称,该模型使用了强化学习而非人类示例来开发推理步骤,减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程,即这一模型通过解决问题获得奖励,从而强化学习效果。团队总结说,未来研究可以聚焦优化奖励过程,以确保推理和任务结果更可靠。
  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%,在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
  本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如因无法联系到作者侵犯到您的权益,请与本网站联系,我们将采取适当措施。
关注微信公众号:

官方账号直达 | 关于我们 | 联系我们 | 招聘 | 广告刊例 | 版权声明

地址(Address):北京市西城区广内大街315号信息大厦B座8-13层(8-13 Floor, IT Center B Block, No.315 GuangNei Street, Xicheng District, Beijing, China)

邮编:100053 传真:010-63691514 Post Code:100053 Fax:010-63691514

Copyright 中国战略新兴产业网 京ICP备09051002号-3 技术支持:wicep