|新一代信息技术 信息基础设施建设 互联网+ 大数据 人工智能 高端信息技术核心产业
|高端制造 机器人 智能制造 新材料
|生物产业 生物医药 生物农业 生物技术
|绿色低碳 清洁能源汽车 环保产业 高效节能产业 生态修复 资源循环利用
|数字创意 数创装备 内容创新 设计创新
|产业资讯
|地方亮点及地方发改委动态
|独家内容
|杂志订阅
✍️ 投稿
您的位置:首页 > 高端制造 > 新材料
量子材料,更近了
2021-09-29 15:09
来源:中国科学网
字体: [   ]
  

  新工艺可以达到即使是当今最好的光刻技术也无法达到的精度。图片来源:丹麦技术大学/Peter B?ggild, Lene Gammelgaard og Dorte Danielsen.

  丹麦技术大学(DTU)和“石墨烯旗舰”的研究人员已经将纳米材料设计提升到了一个新的水平。二维材料的精确图形化是利用二维材料进行计算和存储的一种途径,它可以提供比目前技术更好的性能和更低的功耗。

  物理学和材料技术领域最重要的发现之一是二维材料,比如石墨烯。与其他已知材料相比,石墨烯更强、更光滑、更轻、导热和导电性能更好。但它们最独特的特性可能是可编程性。通过在这些材料上创造精致的图案,人们可以极大地改变它们的属性,并可能精确地做出需要的东西

  目前,DTU纳米实验室的电子束光刻系统可以记录10纳米以下的细节。计算机计算可以准确预测石墨烯图案的形状和大小,从而创造出新型电子产品。研究人员利用电子的电荷和量子特性,如自旋或谷自由度,从而在低功耗的情况下实现高速计算。然而,这些计算要求更高的分辨率,例如原子分辨率。

  “如果我们真的想打开未来量子电子学的宝库,我们需要深入到10纳米以下,接近原子尺度。”DTU物理学教授兼小组负责人Peter B?ggild说。

  这次他们成功了。诀窍是把纳米材料六边形氮化硼放在你想要图案的材料上面。然后用特定的蚀刻配方钻孔。六方氮化硼的晶体可以蚀刻,这样在顶部绘制的图案就会在底部变成一个更小、更锋利的版本。相关论文日前刊登于《美国化学会—应用材料和界面》。

  “我们在2019年展示了仅12纳米间距的圆孔将半金属石墨烯变成半导体。现在我们知道如何创造圆孔和其他形状,如三角形。这种模式可以根据自旋对电子进行分类,并为自旋电子学或谷电子学创造必要的组件。” B?ggild解释道。

  研究人员表示,此次开发的蚀刻工艺缩小了尺寸,低于电子束光刻系统不可打破的极限,大约10纳米。假设做一个直径为20纳米的圆孔,石墨烯上的空洞可以缩小到10纳米。但这个“超分辨率”结构背后的机制仍然没有被很好地理解。

 

 

本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如因无法联系到作者侵犯到您的权益,请与本网站联系,我们将采取适当措施。

关注微信公众号:

官方账号直达 | 关于我们 | 联系我们 | 招聘 | 广告刊例 | 版权声明

地址(Address):北京市西城区广内大街315号信息大厦B座8-13层(8-13 Floor, IT Center B Block, No.315 GuangNei Street, Xicheng District, Beijing, China)

邮编:100053 传真:010-63691514 Post Code:100053 Fax:010-63691514

Copyright 中国战略新兴产业网 京ICP备09051002号-3 技术支持:wicep